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| SUMMARY

(0/

Bayesian solutions of tracking problems that involve measurement associa- :

-tion uncartainty, give rise to Gaussian mixture distributions. which are Lcmpcsed

of an ever increasing rumber of compcaients. To implement such e traaking filtex,
the growtb of components must be controlled by approximating the mixture distri~

bution. A popular and economical scheme i3 tlie Probabilistic Data Association

Filter (PDAPY, which raduces the mixture to a single Gaussion component. at each
time step, However, this approximation may destroy valuable information,
espacially if sevecal significant, well spaced ccuponents are present.

In this Report,two new algorithus for reducing Gaussian mixture distxibu-
tions are presented. These tochniques preserve the mean and covarianc.. of the
original mixture, and the final approximation is itself a Gaussian mixture. The
reduction is achieved by succassively merging componants or groups of components.
The two algorithms have been used to control che growth of components which
occurs with the svlution to the problem of tracking 4 single object, in the pre-

. -senge of uniformly distributed false weasuremonts. Simulation results are pre-
© sented which compare the :;e*fomame of the resulting tracki_ng filters and the PDAP.
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1 INTRODUCTION

A tracking filter is an algorithm for estimating the position (and possibly
also the velocity or other factors) of an object from measurements of a semsor
such as a radar. In general the sensor will produce measurements from the
required object and also from random noise interference, clutter and other
objects“. Usually it is not possible to distinguish with certainty between the
useful measurements from the object and other unwanted measurements. In these
circumstances the computational requirements of the full Bayesian solution to
this problem rapidly increase as tracking proceeds. This Report is concexned
with methods for containing the computational requirements within specified

bounds, while minimizing tue consequent performance penalty.

It is usual practice for the computational demands of the tracking filter
to be controlled in two stages on every occasion that measurements are received
from the sensor. The first of these is a coarse acceptance test which is applied
before new measurements are processed, while the second stage is applied after
processing. The acceptance test is effectively a tracking gate which rejects any
measurements which are very unlikely to originate from the object of interest,

- and since it is applied before processing it is computationally inexpensive.

This type of test is well known (see Refs 2, 9 and 11) and is widely applied to
measurement association problems where ambiguities may exist. Therefore the
acceptance test will not be considered further in che main text of this Repore,
although its application to the simulation example is deseribed in Appendix D,
After processing of the accepted measuremencs is cogplete, it may be necessary
to approximate the solution to avoid an excessive computational load when sub-
sequont weasurements are incorporated., Unlike the acceptance test, this second

stage of control way result in a significant modification of the complete solu-
‘tion. Hence careful consideration should be given to this approximation in

order to minimize the offect on filter performance. The design of such reduction
algorithms is the main subject of this Report. -

in section 2 the Bayesian salutioa of the tracking problem is briefly

_discussed and a set of requircments for a veduction algorithm is formulated.

Pravious approachus to this problem ave alsu discussed. The design of reduction
algorithms is reported in sections 3 to 5, and in section 6 the performance of

- the algorithus isiasnessed by simulation for a partiuulér tracking examgple,

This assessment also compares the performance of the proposed algorithos with

- the pooular Probabilistic Data Association Piltet3 (PDAF) approach.

-
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2 MIXTURE DISTRIBUTIONS AND THE REQUIREMENTS OF A REDUCTION ALGORITHM

Bayes theory provides an ideal approach to the tracking problem. In this
approach the probability density function (pdf) p(x) of the state vector x
at time t, 1is constructed using all available information. Here x 1is the

vector of parameters to be estimated. When further sensor measurements become

~ available at time ey this-information is used to update the pdf using Bayes

theoren. In principle, an optlmal estlmate for any de51red criterion, such as
. minimum mean square error, may be obtained from the pdf p(x) .

The solution of‘tracking problems involving measurement uncertainty leads

to mixture dxstrxbut1ons for the requlred state vector. A mixture distribution

"has a pdf of the: form.

9,(&) = ) 8 (x)
' 1=l
where p;(x) is a component pdf and B, is a probability assecizted with the
1‘“ COmpeneut such :hat :i~* Lol : - : :

~ For the tracking problem cach component of the ﬁixtdre”éorrespcnds to a possible

track, and Bi is the probability that the assuagdlngasurement history for

track i is correct. If the equations of wotion of the object to be tracked -

are linear with Gaussian disturbances, and ﬁeasureﬁancsrofigiﬂacing from the

‘object are lincarly related to the suate vectoy but corrupted by Gaussian:

geasurement noise :hun cach of the mixture cowponents is a Gaussian d:s:rzbut;on

(see Refs 1, 2 and Appendxx Ty wherc this rasulc is ﬁtthcd for a part;cular
tracking problcmo. '

_pi-(gg)_é- Az ;uQ v ?i), P

wl

where y; is the wean of the Gausslan dxstrzbutzon and

P. is the covariance mattxx.

In this case p(g) " i kaown as a Gaussian mixture {see Ref 6) aud each coapounent
may be thought of as. the cutput of a Kalwan tracking filter.
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‘determined (but see section 6). Huwever .t 2 Iihely that the performance
vlpenalty-&ill be related to the extent to which the approximation wodifies the
~structure of the distribution. Hence requivement (iii) is writtea in terms of
' diétribu;ipn styucture (see below). |

While uncertainty persists, the number of components in the mixture for
the full Bayesian soluticn will grow as tracking proceeds. The coarse acceptance
test may be employed to cut down the number of feasible measurement histories to

consider (and so the number of components) by rejecting very unlikely measure-

ments. However if more than one measurement is passed by the acceptance test

at each time step, the number of mixture components will still increase. Since

every component must be propagated at each time step, to implement a tracking !
filter based on the Bayesian solution, it is essential to control the growth in
the number of compcnents. Here, it is considered that the control should be

exercised by a reduction algorithm which fulfils the following requirements:

(i) The approximation should result in another Gaussian mixture. This
is necessary to preserve the basic tracking filter algorithm which is a
bank of Kalman filters.

(ii) The algorithm should allow the maximum number Ny of components
after approximation to be chosen as desired.

(iii) Whenever possible, reduction should be achieved without modifying
the ‘structure' of the distribution beyond some acceptable limit, Con-
versely, to avoid retaining unnecessary components, reduction should con=-
tinue until this limit is reached, so that the approximation'may contain

less than NT

(iv) Intuitively the approximation should proserve the mean and

components.

covariance of the original mixtuve.

_ (v)  The reduction algorithm should be computationally efficient, even
~when the original mixture consists of a large nunber of components (for
example over 100), each with a different covariance matrix, |

Of chese requirements, number (iii) nvceds furthier commient. Ideally the

‘veduction algorithm should attespt to maintain some level of filter performance

withia the limit of ‘Hf components. A tuitable performance measure would be
the probability of losing ttack. Unfortunately the relationship between this

performance wmeasure and modification of the mixture distribution caunot be casily
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A number of techniques for controlling the growth of the mixture distri-
bution have been reported. A popular and economical approach is the PDAF3 in
which the Gaussian mixture is approximated by a single Gaussian component at

every time step. However if well spaced components are present, the approximation

e e i e M ol s AL i % A

may destroy important structure in the distribution. Methods which allow for the
retention of more than one component include the N-scan memory filter of

Singer et aZ‘, and the direct approximation approaches of Alspacha and Lainiotis
and Parks. None of these techniques ensures that the maximum number of components
in the approximation is always within a specified limit, and Ref 1 does not use a
direct measure of mixture structure. Ref 4 assures that all components have the

same covariance and the method of Ref 5 would be very time consuming.

In the following sections two new mixture reduction algorithms which meet
all of the above requirements are proposed. These algorithms operate by merging
similar components together. In the first of these aigorithms, the Joining
Algorithm, a single pair of the 'most similar' components are merged at every
iteration. In the second algorithm, the Clustering Algorithm, groups of similar
components are merged at each iteration., The second method should be computation-
ally more efficient, but with the former, the reduction process can be more finely
rogulated so that over-reduction is avoided. Both techniques are based on the
same measure of mixture structure modification (requirement (iii)), which is
dorived from a decomposition of the aixture covariance wmatrix.

3 -MIXTURE STRUCTURE: THE COVARIANCE MATRIX

The covariance matrix P of any mixture distribution with N cowponents
way be decomposed iuto two contributions, W and B (see Appendix A.1):

P = Ye+B

.
_vh—gm W o= Z Bipi-

el e

e

P

N

A ' . . 1E meed bepd '

X :E: B;b, . i3 the mean of the distribution, and
i=} ‘
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Y;» P, and B, are defined in section 2.

The matrix W may be interpreted as the contribution from the covariance 'within'
each component of the mixture, while B may be interpreted as the between com—
ponent contribution due to the separation between the mixture components. B and
W are both symmetric matrices, W being positive definite and B being positive

semi-definite.

Suppose that the mixture distribution is approximated by merging several
components together. If € is the set of subscripts of components to be merged,
then in order to preserve the mean and covariance of the mixture, the probability

]

mass (', the mean u' and the covariamce P' of the new component should be

chosen (see Appendix A.2) as:

P* = 7 Bi(Pi + Biﬂ!) - H'_'T . M)
L

Although the overall covariance matviz P is unchanged, this mexging of
components results in a loss of betweeu component covariance B which is balaneed
by au increase in W . More precisely, the difference L = W' =~ W is a positive
semidefinite mateix given by (sce Appendix A.3):

N - 1 "'u ¥, = ﬂ. u-‘lf‘

ey s D))
' ie€ H _

This shift of covatianve from B to W provides a useful weasure of the

change in the structure of a wmixture discribntiou when cogponents are combined,

{A similar matvix decomposition has been usgd in Cluster Analysxs. whxnh iy don~=

cerned with the grouping of data poiits iato natural clusters -~ see uaud )

4 THE JOINING ALGORITHM

Ideally the final partition of components into sets for mevging should be
such that the increase in some cost function is minimized. However, to reduce A
the mixture from N to M couwponents, this could iavolve the evaluation of the

criterion for cvery possible partition to identify the winimus. Such a procedure




for a number of different values of M would be far too time consuming and so a
suboptimal approach has been adapted from the agglomerative methods of Cluster
Analysis (see Hand6). In this approach, which we call the Joining Algorithm,

a pair of components are merged at every iteration of the algorithm. The com-
ponents for merging are chosen to minimize the increase in the chosen cost function
at each stage. Clearly there is no guarantee that the final partition from such

a procedure will achieve the smallest possible value of the cost functionm,

To implement the Joining Algorithm using a cost function based on an
increase in the within component covariance, we require a suitable scalar measure.
If components i and j are merged, the increase in W is given (see

Appendix A.4) by:

8.8,
s aely (s

- One possible measure 1s the trace of Lij which is the squared Euclicean

distance between component means modified by the factor Biﬂj/(si + Bj) . However
this has the disadvantage that it is dependent on the scaling of the elements of
the state vector and so is problem dependent. This difficulty is avoided by

using the Mahalanobis distance (see Ref 6) to give:

4§ - ‘s’?"é‘%"é‘;(‘; - ) V(e - ) @

which is related to Lij by (see Appendix A.5)
2 o, )
s - Py .
'dljﬁA c*(? Ll]
This measure is invariant under all won singular livear trowsformations of
the state vector (see éﬁbéﬁdiﬁ~ﬁyﬁ). At cach itervation of the Joining Algoritha,
the two covponents which are ¢losest in the sense of the distance weasure,
equation {2}, are combined to forwm a new compoaent defiued by the velations,
equation (1)

The winitwum value of the distance measure at cach itexation is an indicator

'of the change ia distribution structure resiylting from the werging of the two

closest components. It .is shown in Appendix B that this wminimum distance
increases wouotonically as reduction proceeds and $0.each merging operation

|
3
b
£
{
|
i
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increases this measure of structural modification. Thus if a threshold T
defining the maximum acceptable modification to the distribution is specified,
approximation should proceed until the minimum distance exceeds this threshold.
In choosing a value for the threshold T , it is useful to note (see Appendix
A.7) that the distance dij is bounded:

2 *
dij < din(x) .

Simulation studies indicate that a value of
T = 0.001 din(x)

retains sufficient components to give, on visual inspection, a good approximation
to the mixture. At each iteration, the algorithm determines the number NR of
remaining components, excluding the set of smallest components with total prob-
ability mass (fe the sum of their B8 weights) less than By . If dfj exceeds
T befiie Ny has been reduced below the specified maximum By » then approxi-
mation continues beyond the acceptable limit of medification. The purpose of

KT , which has been set to 0.01, is to avoid wasting effort on gtoupxng 1ns;g--

nificant cowmponents.,
To implement the Joianing Algorithm, a matrix (dij) containing the distance

between every pair of components in the original mixture is evaluated using
equation (2). Note the wmatrix (dgj) is symmetric and dij = 0 , so that only

the upper triangular part of the matrix need be evaluated. At each iteration

the smallest element of the matrix (for i ¢ j) is found and the corresponding
pair of components are werged using the formulae (1). ‘Thea tow j and column j
of the distauce mitrix are deleted, the new cowponent is written into stovage

location i , and vow i and column i of the matriz ave revaluated using (2).
_Again all processing is confined to the upper trisngle of the watrix. Note

that since the merging of compoutnts préserves the covariance matrix P , only

one mateix inversion suffices for all distance evaluations. Algoritham iterations

continue until the stopping ¢riteria are satisfied (ses the Flow diasgram of the

~ algoriths given in Fig 1). The storage tequ;rement for the algoritha is G(ﬁ ),

the nunber of distance evaluations xs OlN ) and the number of cowpariscas is
u(a ) , where N ‘is the number ~f composents in the original mixture,

Figs 2 to 4 show an example of mixture veduction with the Joining Algoritha

for a two dimensional distribution. Note that for ﬁr = 10 the approximation

“appears to be very good, although for By = & several important compooeats have
been combined. :

t

!
..‘!
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5 THE CLUSTERING ALGORITHM

The second algorithm is based on the proposition that the mixture com-
ponents with the largest B weightings carry the most important information.
Thus starting with the largest component, this algorithm gathers im all surround~
ing components that are close to the principal component. Subsequently the
largest component of the remainder is selected and the process is repeated until
all the components have been clustered. This is called the Clustering Algorithm.

The distance measure chosen to represent the closeness of component i to

the cluster centre is defined by

where Be » B and Pc are the parameters of the principal cowponent, and ﬁi
and y; are the probability mags and mean of the ith component. This is the
same as the distance measure dij of the previous section, except the distance
is normalized to the covariance of the cluster centre rather than the couplete
mixture. Any component i for uhi;h D§ < T‘ is selected as a cluster membor.

The threshold T, defines the acceptable wodification to the distribution.
. L
In chosing _T' y it is helpful to first cousider the measure _Diz

- defined by

)’ . 4T pt *

“ o , - hile ™ .

o (e R( k)

9 , o SR I

If the eritevion for clustering a component 1 were l)i 4 T' s then any cota-
]

ponent i whose wean were to f£all within the hyperellipseid definud by T‘
would be clustered. This hyperellipsoid is a cuntour of constant péobability

density of the principal component, and the proportion of probubility wmass

. L]
cucloged is a swasure of the sclectivity of the clustering operation. If T‘

"uurc chiosen so that only a shail proportion, say 12, of the probability mass of
~ the cluster contre were enclosed, then the structure of the disteibution should

, N RE .
be little altered by clustering. lowever Di“ is independent of the probability

- mass (B;) of the componsnt, and intuitively, werging a large component would
 have a greater effect or the mixture than werging a small component. The

wodifying factor 8.8 (8, + 8) biases this distance so that swall components
ate wore cas‘ly clustered while large compoucnts rotain their individuality. It
is suggested that the threshold for ‘
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should be chosen so that small components with B weights less than 0.05 are
more readily clustered while components with 8 weights exceeding 0.05 are

clustered less readily. Fig 5 shows that the contour

8.8

[
.
Bl BC

= 0.05

is close to the line Bi = 0,05 inside the region of interest, except when Bi
is nearly equal to Sc . Thus it is suggested that to give a good mixture
approximation, the threshold for D% should be set to

t
T, = 0.057, ,

1

]
where T, defines the hyperellipsoid containing only 1Z of the probability

" mass. (T; can be found from tablas of xz ‘)

Each cluscer of components (some clusters may consist of a single component)
is approximated by a single Gaussian defined by equation (1). -Cluscering proceads
until the probability mass of the unclustered components is-lﬁss than BT s AS
for the Joining Algerithm, the purpose of BT o which is set to 0,01, is to
avoid wasting offort on clustering insignificant corponents. If the number of
clusters is less thaw o ¢gual ué ﬁf , the unclustered components are deleted
and approximation is hamplete; otherwise fufthévvreduegien,is aécusshry, This
is achieved by repeating the ¢lustering praeadura,au the firet approxiwation,

© but with the clustering threshold iuncremeated by 6T . This elustering operatien

is iterated vntil the nocessary veduction has been effected. The choice of the
incvement 4T {s a cospromise betveen the number of iterations reguired and the
possibility of clustering sore componeats than tecessary. Io this study, the

- value of 4T is fixed:

&Y = 0.05 atr'

- where T' ¢ 8T' defines the hyperéllipsoid which coatains 6% of the probability
wass of the principal componeat. (Simulation work has shown this to be a reéason-

able compromise.) - However an override is provided which may increase the cluster-
ing threshold further to casure that at least one component is clustered ou ecach

-iteration. A flow diagram of the algorithm is givea in Fig 6.

< g

£l
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The computational cost of this algorithm depends on how many iterations are

required to adequately reduce the mixture. It is most efficient when all approxi-

mation is accomplished within a single iteration, which required between N and
NM distance evaluations and comparisons, and M matrix inversions to reduce the
mixture frem N to M components. In the worst case when only one component

is clustered on each iteration, the number of distance evaluations and comparisons
is O(NB) and the number of matrix inversions is O(Nz) . The algorithm

requires minimal extra storage above that needed to hold the mixture components.

Figs 7 and 8 show the result of applying the Clustering Algorithm to the

mixture shown in Fig 2. Note that for N, = 10 , the approximation is very

‘similar to that produced by the Joining Algorithm (Fig 3). However for NT =4

there are clear differences between the approximations from the two algorithms

. (Figs 4 and 8).

6 COMPARISON OF FILTER PERFORMANCE AND THE EFFECT OF VARYING NT

6.1 The tracking problem

The main object of this simulation is to compare the performance of tracking
filters using the Joining Algorithm, the Clustering Algorithm and the PDAF approxi-
mation. The performance of these filters has been assessed for the problem of
tracking an object moving in a plane, using wmeasurements produced by a sensor
(the same problem is considered in Ref 7). The simulation is in three parts:

(i) the generation of the object trajectory and the sensor

measurements;
(ii) the implementation of the tracking filters;
(iii)  the assessment of the filters' performance.

Object trajectories have been generated from an a-f modela. This model
has been widely used in tracking problems as it is simple, while providing an

“adequate trajectory representation for many practical cases. The trajectory

described by the model is a variation about a constant welocity course, whose

magnitude and direction are defined by initial conditions. The deviation from

-7 this mean course is controlled by the variance q of the model dr:vzng noisge.
»1The a~8 model is defxned by the Lullowirg equation:
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vhere the state vector x

x Tepresents the position and velocity of the object
at time kAt :

& (xa;‘:}’oi’);‘ ’

At is the time step between measurements, and

¥ is a 2 x 1 vector from a Gaussian random sequence with zero mean and constant

q O
-y o)
0 g

Thus, to geénerate a trajectory *gk} , Gaussian random numbers of variamce ¢ -

covariance

vere fed through the recurrence relation (3), starting from some initial
condition x, . |

At en 1 .'me step a set of Cartesian position medsurements have been
generated to simulate sensor measurements. It is assumed that the probability
PD of detecting the object is unity, so exactly one measurement in eaéh_setA'a?>r
originates from the object. This is called the true measurement and it is a _
Gaussian perturbation about the position of the object. Xt is generated from . = . é
the state vector using.thevéqpaeion o | o

where !k isa 2% vector of Caussian measurement noise with zero mean and
constant covariance - - S
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The other measurements are independant of the object and are called false

measurements. Thes~ are uniformly distributed over the sensor surveillance

region, witlh demsity p per unit area. At each time step, the surveillance

region of the sensor is arranged to be sufficiently extensive to include the

e e TR R T T P AT TR e teomzaramene

object position and the acceptance regions of the filters, while track is

maintained. False measurements were simulated by generating Akp pairs of
uniformly distributed random numbers with appropriate scaling; A being the

area of the surveillance region.

2! At each time step, every simulated measurement is passed to the tracking
filters which attempt to estimate the current value of the object's state vector.

i The following information is available to the filters:
(1) the value of the initial state vector x, ;
(ii) the model of the object motion, equation (3):

(iii) the relationship between the state vector and the true measurement,
equation (4);

(iv) the statistics of the false measurements, the true measurement
noise and the model driving noise, including the values of p, r and q ;

.

| (v) the detection probability P_. of the sensor.

D

et

. The tracking filceré do not know:

{a) the values of the state vestor %y » O the noise vactors Y

and w at each time step (k % 0);

-yt

(b) the identity of the true measurement,

H
4
E
i
a

- A8 indicated, three filters have been implemented: the Joining Algorithm f£ilter
(JAF), the Clustering Algorithm filter (CAF) aud the PDAF. As alveady discussed,
'each of these fiiters is based on the Bayesian solution of the above probiem
. (see Appendix €) aud exch uses the coarse acceptance test described in Appendix D,
the only difference between the filters is the mixture reduction algorithm
|  employed. Hovever for the POAF, which approiiﬁnteu the'mixtdre-by a single
';'Gauss;an component, a full propagation of all components 1: unnecenucry and a
"very efficient filter algprxthu way be used3

i i i 3 e a0

_ The perforuance of the filters was assessed by weasuring how long each of
- the three £iltexs was able ¢ unzntsxn track on the object, fe the trnck lifetioe.
E " Bach filter was allowed to continue tracking the object until track was lost. A
R erack was deened to be lost if either of the following criteris were satiefied:
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{a) The true measurement 'is rejected by the acceptance test for five

consecutive time steps. T

(b) ka - xkl >10 0, or lyk - ykl > 10 L for five
consecutive time steps,

where ik , §k is the filter estimate (the mean of the posterior

distribution) of the object position at time step k ,
X 0 Y is the actual object position at time step k , and

L and oyk are the standard deviations of the position
estimates of the equivalent Kalman filter (Ze the optimal filter

for the same problem but with p =0 ).

6.2 Choice of problem parameters

To analyse this tracking problem it is convenient to normalize the
variables, so that the unit of time is At and the unit of distance is vt .
Then the non-dimensional form of the state vector is

Fad

. . T
,-.(.5_ e .x.,v_ts_) ,
/r Y /r v/,
I{ cha target mwodel and measurement equations are written in this form, it can
be shown that the statistics of the problem are completely described by three
noa-dimensional parameters.

4
) ﬂ%}— v the ratio vhich doternmines the values of the filter gains
~ for the standayd a-f :f‘lter'o. £¢ in the absence of false measurements.
- As this paramator increases. the o= filter becomes wmore responsive to
position measurements. - '
(ii) ~ pr , the expected rumber £ false measurements falling withiv a
square whose oide i oue standard Ceviation of the weasurement exrox. -
{448y TD + the deteciion probability, assumed o be unity;
Since the initial state vector is aseumed to be kaown perfectly, the filter per-
formance in norwalized co-ordinates should only depend on these three jirameters.
- (This is because the problem may be written as the estimation of the deviation
_ nhcutAfug nominal constant velieity coucse defined by the initial stezte vector.)
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~ for the standard deviation of the error on oue of the co-ordinates, say x , to
exceed 10 ¢ sk (sce track loss criterion (b)) is 7. These two figures provxda

 Algorithm with thresholds set to the values given in sections & and 5. Ny =1

o Algorxthu. possxbly due tn the aecc;ags of T and T, .

All simulation results reported here are for a single point in this

parameter space:

4
Sﬁt— =

These values have been chosen to illustrate the possible improvement in t :acking
performance of the new reduction algorithms over the PDAF. However, it is
believed that the region of the parameter space where there is a significant
improvement is extensive, and a full investigation of filter performance over

the space will be reported separately. Another factor in the choice of the above
parameter values was a requirement for modest track lifetimes, to avoid excessive

computation costs.

One hundred object trajectories with associated measurements were generated
so that the mean track lifetime and the distribution of lifetimes could be
estimated. The initial object position was taken as the origin and the initial
speec was 10/T/At . Tne initial heading of the object was chosen randomly for

- each trajectory. For the chosen problem parameters, the equivalent Kalman filter

‘rapidly reaches steady state conditions, and the standard deviation of the posi-
tion error on one of the co-ordinates approaches within 1% of its final steady y

~ state value after only four time steps. Also if the track of the object is _ ;
- estimated by assuming a constant velocity course and extrapolating from the '

initial perfect data (fo ignoring all measurements), the number k of time steps 3

* krin s - e

a useful :;mescale uhen considering the results of tho e;mnlation.

6.3 ARgsults,~

%
¥
- ‘C..
{
3
¥

6.3.1 'Averagé_numher of tiwe steps to track loss

: | Fig 9 shows the average number “AME of time steps until track loss as a -
£unction of Bo e for filters using the Clustering Algorithm and the Join:ng

correaspcnds to the special case of the PDAP, and clearly the filtera which teta;n
uota than one mixture component perform better thnn the PDAF. The Joining
Algorxthn filter gives slightly larger values of “AVE than the.Clustgriug‘],
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Also shown in Fig 9 is the filter performance for the JAF with T = 0, e
with the acceptable modification check switched off. Note that the original
setting of T for the JAF does not significantly degrade the filter's perform-
ance, and that the performance for all three cases shown in Fig 9 is similar.
For N, < 10, N rises approximately linearly with N_ , while for NT > 10,

T AVE T

NAVF is nearly constant. For the JAF with T = 0 and NT very large, the

mixture is not subject to approximation, and so this constant level is the

optimal value of NAVE .

Fig 10 shows the average number of mixture components before and after
reduction for the “hree cases of Fig 9. Comparing Fig 10a&b with Fig 10c, the

effect of the acceptable modification check, defined by T, or T, in

1
regulating the number of components for the large values of NT is obvious.

For small values of NT » the approximation for all three cases is principally
controlled by N

regulators of the approximation at about N

T itself. For this example, T, and T become the main

= 10, so the acceptable modification
check appears to select the minimum number of components for near optimal per-
formance. Clearly this cannot be guaranteed for other tracking problems, but
since the thresholds were not specially tuned for this simulation, the perform-

ance with other problems may not be far from optimal.

 For an interpretation of these results, it is useful to view the generation
of mixture components as the filter’'s uay of keeping options open when the choxce

‘of the true measurement is uncertain. First consider the optimal case when the
mixture is not approximated. In this case, track will still be lost (according

to the criteria of section 6.1) when components correspending to false wmeagurew
ments are given a high probability weighting (B) through a chance event. For

- inetance, a manceuvre by the object under track wight coincide with the produc-
 ti0n of a falnq measurement on the original heading, causing the filter to give
4 high weighting to the false weasurement. Several such occurrences could lead
~ the wean poaiiioﬁ estimite away from the actual object position so satisfying '

the track loss criteria. (Note that the average track lifetime deponds on the

,-Vhratk loss criteria.) Clesrly the probability of such occurrences is likely to-
_increase with the.'diffic@lty' of the tracking problem, for example if the
_density' p - of false measurements were to be iﬁcréased. Thus, in agreement with =
'autuztaon. ve expect the avetnge track survival time “AME to decrease thh
| incteasing prableu dxff;culty for ngeu (sena:ble) track 1088 er;ceri&.
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majority of replications. The few replications b;aszng N

}»'_producud by the two reductxon algorithms are wsually very sxmxlar for 1argo N
- vhile for small Ny there are often clear differences. ‘

18

Now consider the effect of the reduction algorithms. Even without approxi-
mation, at any time step, many components of the distributien are almost identical
so that the complete mixture distribution appears to consist of only a limited
number of clearly distinct, significant componénts. For example, the distribution
shown in Fig 2 comprises 37 components, although many of these are almost ident-
ical. The reduction algorithms attempt to combine the most similar componrents
and if this can be accomplished without merging the significant distinct com-
ponents (see Figs 2 and 3) little degradation in tracking performance is to be
expected. However if the number of components retained falls below some critical
level, these key components will be merged and tracking performance will deterio-
rate progressively as the permitted number of components is reduced. In the

current example N,, = 10 appears to be the critical level at which tracking

T
performance begins to degrade.

6.3.2 Distribution of number of time steps to track loss

In the previous section, the average track lifetime was discussed. In this
section we consider the distribution of track lifetimes about this wean. To
illustrate the distribution and to compare the performance of the CAF and JAF
for individual veplicatiocns, the track maintainence times have been plottcd in

Figs 1t to 13 for N, = 2, 4 and 30 respectxvely. In these diagrams each point

T
corresponds to a single replication, and the X and Y co-ordinates of the
point are the time steps at whieh the JAF and CAF (with original threshold

settings) lost track respectively. So points falling on the X = ¥ line indicate

that both filters lost track voinecidently. For large values of N (eg N = 30,

Fig 13), the performance of the two filters is remarkably simxlnr for the

AVE in favour of the
JAV are obvious. For small values of NT (eg N = 2, Fig 11), the points are
scuttcred further from X = Y, although NAVB is almost identical for the two
filters. These results bear out the observation that the mixture approxxmat;ons

cr ]

Pigs 14 and 15 show histograms of the data poincsrfrom Figs 11 and 13; te
for the track lifetimes for the JAF and CAF with N = 2 and NT « 30. 1t can be

seen that those track lifotimes exeeed:ng 20 time steps can be well fchGd by an

pronentzal d;strzbutxon of the form..
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where (t . +a) is the average lifetime of tracks which survive for at least

esis is only once rejected at the 52 level of significance for any of the 24 sets

- the two £i1ters with the original threshold settings (Fig 17a&h), T
;E;rap:dly to nearly constaut v;luen for NT > 10, Also for low values of NT wost
A‘ffme ia:apgnt reducing Fhe mixture, and as 'N,r increases more time is required

~ for track propagation while the mixture reduction time decreases. This is
X a explained by Pig‘?0= the initi31 high values of TAQE _are due to time spent
~~ reducing large mixtures which result from inadequate approximations at values
. of g € 6. Except for the case N » 6, the JAF vas more time~consuming than the
'.fCAF. unually by about 502. and as expected, the executiou times for the filters
- were in all cases eonnxderably greater than the PDAF, - However for N > 10, the
- eight-fold increasé in execution time for the CAF may weil be an acceptable price
: for the perfornnnce iuprovemant offered by this filter.

| shuwu the value of ‘the accéptable moJaficatxon check in the reductxon algorxthms

19

Q-

_ (t - t"mi.n)
o
e for t 2t .
’ { !“m .
p(t) = }

k0 otherwise

tmin = 20 time steps. This is confirmed by a x2 test, the exponential hypoth~

of replications. This exponential distribution indicates that after 20 time

Agteps,’the piobability of losing track is independent of track lifetime, ‘e

-after an initial transient the filters reach steady state conditions. The value

* o in =# 20 was chosen by examining the transient behaviour of the equivalent

‘Kalman filter (see last paragraph of section 6.2) and by inspection of the
simula;ibn results. The distribution parameter o wmay be interpreted as the

average number of time steps that a track will survive in steady state conditionms.

Estimates of ‘o are shown in Fig 16. These values are slightly greater than

‘Tkyn~20.¢.as tracks surviving for less than 20 time steps are excluded.

- 6.3.3 " Computation time

L Fig 17 shows the average cpu time TAVE for the filters to perform a

_single time step. The time scale is normalized to the average cpu time for a
" ‘single PDAP time step which, for the data simulated here, was 1.12 ms on a

Cray 18 compdter;<_rhe computational effort is divided between the propsgation
of mixture components or tracks (see Appendix C) and mixture reduction. For

AVE falls -

T

The time taken by the JAF with T » 0 is shown in Fig 17¢. This clearly
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for the very small improvement for Np > 10 over the filter with the original
threshold settings, there is a large increase in processing time. This extra
time is required for the propagation and reduction of the extra tracks generated

when the full N, components are retained for N, > 10 (see Fig 10).

T

7 CONCLUSIONS

(1) Two new mixture reduction algorithms for uncertain tracking have been
developed. These algorithms have been applied to the optimal filter for tracking
an objact in uniformly distributed false measurements to produce two practical
tracking filters: the Joining Algorithm filter (JAF) and the Clustering Algorithm
filter (CAF).

(2) For the chosen simulation example (an object moving according to an a-8
model) these filters give a substantial performance improvement over the popular
PDAF filter: average track survival time (from an initially perfect track) may
be increased by a facter of 8.

(3) However the computation times for these more complex filters are also
greater than the PDAF: a factor of 8 for the CAF and a factor of 13 for the JAF,
Also computer memory requirements are increased, particularly for the JAF,

(4)  The simulation indicates that the minimum computation time and near

‘optimum performance are obtained when satisfactory mixture approximation (defined

" by algorithm thresholds) is achieved within the maximum number of components
alloved. If the permitced number of mixture components is reduced ‘below some
critical level, tracking performance will deteriorate.

{5) Under these conditions, the track survival times for the two filters were

- identical on at least 852 of the replications. This suggests that filter perforu-

ance is not highly sensitive to the method of mxxture reduction. ptovxded thnt the

‘wost important wixture components are retained,

~(6) wWith continu;ng improvements in computing power, tracking filters which
‘ - retain more than one mixture coumponent, such as the JAF aﬁd CAF, are practical
- alternatives to the PDAF for problems involving wmeasurement association ambiguity.
'iurcher work is necessary to assess the performnnce and ccuputer tequxreuencu of
© such £;1cera for s uxder range o£ ptobleus. '
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‘Appendix A
‘PROOF OF RESULTS OF SECTIONS 3 AND 4

A.1 Structure of mixture covariance

Consider any mixture distribution with pdf
N
p(x) Z B.p; (x)
i=1

and let the mean of the ith component be . and the covariance of the ith

component be Pi . T

PR

The mean of the mixture is defined by

8 - j xp(x)dx

, N
- tei IEPi(!‘)d_" = Zsigi .

im9 =i

‘The covariance matrix of the mixture is defined by

[-06-dhwe

] xx"p(x)dx - 88"

i

- B, j §5Tpi(§)_s_!_§ - ggf .

i=

But

21
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SO

T
=

_ T) 4 gt ' 3

P z Bi(Pi +pur ) + 28 (A-1)
i=1

: = W+B

N
where W = z Bipi » which depends on the spread of each individual compomnent
i=1 '

of the mixture,

el
_couponents., -

Al Metging components - ... .

Suppose the reduced mixture LN () w--.{ormd by merging several components
of the original mixturc 9(5) D ze S -

: ;"A-(i) ﬁ'p’(x) * z B;p; (%)
- where p'(x) is the new component t‘orued by merging thom component* with sub- |

scrips from the set € . To ensure that pk(x) 13 a px’opet pdf, the: probﬂbun.y
: 7' mass of the new cwonent must . be gweﬁ by :

e Zs

ieG '

Jyeo
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If the means of p(x) and pA(§)' are to be equal, Af
= aty? ' . ;
zsiﬁi By’ + Z By
T ife

Thus the mean of the new component is given by

ieC

If the covariances of pA(§)v and p(x) are to be equal, from (A-1)

z ARINVHES SRR WL Z B5(p; ¢ wyuj) - 8
i ige

Thus the covariance of the mew component is given by

po- 'é"'-z Bi(Pi ‘&iﬁi) -t .
icg

A.3  Mexging eompqnentsArasdlc in & loss of hetween component covariance

Let W and W' be the within component covariance of p(x) and pﬁ(g)
respectively, and let B and B' be the betveen component covariance of p(x)
and ‘pA(§) respectively (see section A.1). Then since overall covariance P is:

~ preserved,

P = WeB = W oeB

' ﬁefinefihe,ugtrixl'n' s

L e BB e W-W
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From sections A.1 and A.2,

§
14 ’
}; f - = Snt _
| W -4 = B'P Z B,P; ‘
:5 ie€
= 8(P+ T)_B'IQT_ g.P
ivli T Ul R ii
ie¢ ie€
= 7 T _ go,e, T
ie¢ ‘
However
T T ' X
Blgty'" = Z Bugu'™ = Z Bu'y; = z Bttt
icC ied - ie€
. . ’ . T
_therefore L « W-W = Bi B - - u'y + H'H (
igt
: . o : T
. (_gi_.* o) (e -w')
Thus L is a positive semdehmte ﬁatria and in this sense the ﬁnrg;ng of o
: comoneﬁts resulta in & loss of bétuein cowpaneut covariance,
-A.G ﬁxe loss of beween comem covanance tesulting fron mtging tuo
' | somponents ' .
- Suppose that only tee -coapanents,- i and § » are wrgeda Then from m-a),
’ o -the probnb:.ucy nass uf che new: cﬂnpom!nt is o :
R - n e
| the wesn of thé new compouent is o _
S ]
& 7 TR EE,
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and the covariance of the new coniponent is

v o 1 T T
SR CORE AR 'é"'iei'-’igi MY

T
~g (o + o) (B + 8) z
, &
g CURERH Rt (TR [ R I

From (A-2), the loss of between component covariance resulting from joining i

and j is

Ly = 8'F' - (sivi N ajpj)

88, T
g (o y)(ety)

A.s - The rela‘uqnshxp bgt@en _dij Vam.! ’l‘ij _

considgr '

R S OE B

:itéﬁ",('z) of section 4.

A _a_ij is invarisnt under don-singular liuear transfordations of g

 couider the trapatormaion
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| where the inverse of A exists. If. }
3 X = . XM, .

: P f: 54" (siup,%, ) :
: i=1 ’
: then under the above transformation “

N
e - Z 8,0 (158109

[
——h

B and Q. = APiAT .

The distance between components i and j of p(y) is given by

dij = zzii&é; (ﬁi - Ej)TQ'1(.§i = Ej) (A-4)

where Q 1is the covariance of the mixture p(y) . From the linearity of the

expectation operator Q _APAT . Also

AR TR

g0 on substicuting into (A-4),

8,8, T -1
&y o s o) W) oy )

Hence, since AT<APAT) A=P ! , the distance measure is invariant under the

transformation (A-3).

; "A.7 The distance dij is bounded

From section A.3,

b P = W+B = W+B'+B~B'

" . ]
N =« (W+B' + Lij

U C RV
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where P and W are positive definite matrices, and B' and Lij are

1

positive semidefinite matrices.. Multiply through by Pf to give,

A dGe g o o

I =p'p = p"(w + Bf) + P"'Lij .

Mo

et '{fﬁ?::&

Taking the trace gives &

n s tr[P-1(W + B')] + tr(P-1Lij)

where n 1is the dimeusion of the state space.

Hence since P”1 and (W + B'} are both positive definite,

L
3
i
¥
%
b
&
i
i
3.
¥
8
£
@
i
i
i
A
el
b

»:r[p"(w + B')] > 0

and so

v e
.

i SR

- <
. ]

8
5
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:,ca.eds.-._ we must prove that

Appendix B ‘ '%%

R

THE MINIMUM DISTANCE BETWEEN COMPONENTS INCREASES MONOTONICALLY AS 5
" 'REDUCTION BY THE JOINING ALGORITHM PROCEEDS f'

Suppose that at some stage during mixture reduction, the closest components
have means x and y and weights B, and By . The distance between these

components is dmin » where

2 2
&, = f(Bx,Sy)II:_t - yll

where ||x - xll2 = - E-y

and f(Bx,By) - BxBy/(Bx + ey) .

As they are closest, these components are merged to produce a new component with

mean
Bx+ B8y
Nl Al
- Q+B
X Y
and weight

B, Bx + By .
_ Now consider any other component with mean z and weight 8 . The
distances dzz and dyz between this component and either of the two which have
been merged must be greater than or equal to d_;, » 80

2 2 g

duin € s - f,(ax'sz)“?i “EH B U
and B A : :

dog € &, = feas)ly-2? . e

To confirm that the pinimum distance incteaseé‘unnotonicnlty_as reduction pro-

&
EN

B I | 2
% % duin

- %0¢
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Now

S Ly Gt s Sa s SN E |
SN AU St AR o TR e

W

ot A ey

N

X
Pl
-3
}
i
8]
d
;
;

BX
= £(8,8,)| | - v - 5 (x - y)

2

= £(8,8,) {lla -3l1? +§§ lx - 312

v

T T s e v e aay P -
4 T A i et

‘ +-§-’5[|l§‘-§ll2-||5-zllz-ll§-xll2]

£(8,05,)

B 8
- el BHz-ﬂP+Blh-ﬂl a na-ﬂﬁf.

Since N

f(-B".Bz) Bwaz 8,

By B, ¥8) B E

2

_ and using the definition of the distaunce measure,

el e i sdtal

604

=
-&‘
2
Hy
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Hence from (B-1) and (B-2)

This completes the proof.

Appendix B
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' Agpendix C
BAYESIAN SOLUTION OF AN UNCERTAIN TRACKING PROBLEM

C.1 Introduction

This Appendix contains a formal statement of a tracking problem of which
an example is given in section 6. This tracking problem, which is taken from
Refs 1 and 3, illustrates many of the difficulties of uncertain tracking. The
purpose of this Appendix is to show that the optimal solution of the tracking
problem generates Gaussian mixture distributions and to specify the optimal
tracking filter., The recurrence relations of the JAF and CAF (see section 6.1)
are the same as the optimal filter, except that received measurements are
subjected to a coarse acceptance test and the Gaussian mixture (C-21) is approxi~

mated at each time step.

The solution of the tracking problem is approached from a Bayesian point
of view (see Refs 1 to 4). We consider the conditional pdf of the state vector
of the object at time ty conditioned by all the information available up to
that time, This conditional pdf is a complete solution of the tracking problem.
In section C.3 it is shown that the conditional pdf is a Gaussian mixture.
Assuming the prior pdf of the state at time step k 1is a Gaussian mixture
and given the problem statement of section C.2, the posterior pdf, after
updating with measurements received at this time step is shown to be another
Gaussian mixture, with an increased number of components. This posterior pdf
is projected forwards to show that the prior pdf at the following time step
k + 1 1is also a Gaussian mixture. 7Thus the solution is established by

induction,

C.2 Problem formlations

It is assumed that the state vector x of the object of interest evolves
according to a linear equation

§k‘_‘" - °§k f I‘!k : (C-1)

»

uheta»'ﬁk is the n-component state vector at time t

6 is the n ¥ n state ttansitxon watrix,
P isan nxcvr matrxx

and ?k is an r-component vector of systeu dr;v;ng noise which lias a Gaus&xan

d:sttibucxon w;th zero uean and covar:ance

i
A
N W
£

)
K
-l
B
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E[gigi] = Q5 - (c-2)

Here Q 1is a positive definite r x r matrix and § is the Kronecker delta.

ik
The state vector contains the object position, and usually the velocity and

possibly other attributes of the object. Also it is assumed that at time t1 ,
the state vector x , is known to have a Gaussian distribution with mean E,

and covariance M1 .

At every time step k (Ze at each scan), a number of measurements are
received from the semsor. If Z, denotes the set of m, Weasurements '

received at time ty s then

S

Each measurement is a u-component vector. It is assumed that the object

2, .
is well inside the surveillance region of the sensor, but that the (knowm)

probability P of detecting the object may be less than unity. It is also

D
assumed that at most one of the measurements may originate from the object.

If measurement z, .

state vector by the linear relatiomship

does originate from the object then it is related to the

(C-3)

where H 1is the u x n measurement matrix
and v, is a u-component vector of measurement noise which has a Gaussian
distribution with zero mean and covariance

T

Here R 1is a positive definite u » u matrix and Gik is the Kronecker delta.
A measurement which originates from the object is said to be true, while all
other measurements are false., A false weasurement is assumed to be independent
of the state vector, to have a uniform distribution over the surveillance region
of the sensor and to be independent of all present and past meagurements. False

wmeasurements are assumed to occur at an average density of p per unit area.

Further it is assumed that before examining the values of the measurements in
the set 2, » there is no inﬁorua;ion on which, if any, of the measurements are.
agsociated with the object., Note that if the identity of the true measurement
were known, the problew would reduce to that of the standard Kalwan filter.
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The tracking problem is to estimate the state vector x at each time
step, based on the available information up to and including time tk . It is

assumed that ¢, I', Q, H, R, P

D and p are given, together with all the

measurements.

C.3 The optimal solution

C.3.1 The prior distribution of the state vector at time t,

The prior pdf of the state vector at time t is the pdf of N given e
all available information up to time t, but excluding the set of measurements §
received at time tk. This available prior information at time tk is denoted :

5Fk » and this includes all measurements received at the previous time steps:

Z1, Zz, “eony zk"1 .

Since any ome or none of the measurements of Z; could be true, there are
exactly m; + 1 exclusive hypotheses concerning the truth or falsehood of the
members of 2, . ‘Thus the total number of possible hypotheses under J?k is

k-1

]-I +‘1) A (c-5)
im1 P |

Therefore, given: ng -1 possible hypotheses, the pdf of the stace vector .
may be wrx;ten : :

(sl
ke ' deno:es one of . the poasibie hypotheses o che maasuremants avail-

able under % P (*k‘5?;,1 i‘jp ) is the pdf of X assuming é?’ i is
correct ‘and .9' is gi\mn, and. ?r{ rﬂ"k -1 i' } is the probabilit.y t:hat:

ﬂk)Pr; ., il@g f .6

: Jrk -t i -i8 current given the 1n£ormat;on

ﬂou~supyosa thac che condltxonal pd:s in the Rﬂb o£ (C—&) are knowa to be

3

‘ i"”“ #R) s Slackend - e
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{ é Also suppose that the probabilities of the hypotheses are known and are ?:
: -é denoted
[ ,
E Pt{ﬂ"kq i|9k} " By (c-8)
i’ 5

In this case (C-6) is a fully specified Gaussian mixture pdf. Note that the

above suppositions are true for k=1,

C.3.2 The posterior pdf of the state vector

The set Zk of o, measurements received at time tk is to be used to
update the prior pdf of X specified by (C-6) to (C-8). The resulting

posterior pdf is denoted

p(§k|zk'9k) :

In the following working we shall omit j?k for ease of notation, although the
i dependency should be understood for all conditional probabilities and pdfs.
1 Thus the posterior pdf of ) will be written

i(xla) -

After updating with the latest set of measurements, the total number of possible

hypotheses is increased to

k=1 (“‘k v1) .

This increase may be viewed as a branching process where each of the é?;_‘ i
prior hypotheses of (C-6) may be seen as a potentiasl track and each of these
tracks then splits into a further o, * 1 tracks resulting from the ncw set of
measurements. Thus a posterior hypothesis including the latest set of measure-
meats zk; may be written as a joint hypothesis

"kij " (‘%—tiﬁ'uj) :

ﬁ where ¥, . is independent of J¥} _, . and indicates that the jth measureaent
i of set 2, is true (or that they are all false if k = 0). The complete set of
: posterior hypotheses is | ' 3 '
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Hence the posterior of pdf of x, may be written in the form

k=1
(’-‘kl’?’fcij, Zk)Pr{ﬁ’llij|Zk} . (c-9)

p(mlz) -

p
=1 j=0

e

First consider the posterior pdf of X conditioned by éﬁ”éij :

JENE 2 )

is the probability density resulting from updating p(glj?i_1 i) on the

assumption that the jth measurement from 2, is true (for j # 0). 1In this case
% is the only useful measurement from Z, and the other members of 2, can
be discarded since they contain no relevant information. A true measurement z,

has a Gaussian distribution:
/(ET i Bx, R)

and the prior density of x  under ;?ii is also Gaussian given by (C-7).
Hence the required posterior demsity is also Gaussian and is given by the
standard Kalman filter. So for j #0 ,

-

JENT RN IEEVA TR NIR \

vhere &1, = By + K (2 - ), | |
. T | | T (C-10)
Kei * PR | ’ -

T, -
Prij = Mg = M SN,

‘1f §j » 0, none of the wembers of Zk ‘are true anqlﬁo the prior pdf is
not modified: - : ' ' ' '

1 - X

~ki0

~and ' - {C=11)

Peio = Mg

ot sk
i
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s
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Now turning to the second term in the summation of equation (C-9), the
posterior probability that # l'cij is correct may be evaluated using Bayes

theorem:

P”{ﬁ’fcijlzk} . p(zki?’l'dj) {1;3(';:131 1} {%kﬂ i} m12)

The equation (C-12) indicates how the prior probability Pr“{;?i_1 i } is
modified by the observations at time ty - The posterior probability can be
found by evaluating the three factors in the numerator of the RHS of'(c-12).

First consider p(zklj?;ij ) . This may be written

() - /p(zk'ﬁkmij)f‘i‘k § f"(zklﬁu?f?éij)*’(ﬁklﬁ"éij)ﬂk

eesee (0‘13)

Since the elements of 2, are independent

ml‘ ’ .
("kl-k' m n" uzl B Y ) -

i=1

A measurement 2L is false under ij if j 4 £ . False measurements are
uniformly distributed over the surveillance region of the sensor, and so the pdf
of a false measurement is Vi' » where Vk is the volume of the surveillance

R region, If j = 2 , the weasurement 2 is true and so is a sample from the |

=ke
Gaussian distribution defined by (C~3). The prior pdf of X

P(xlyy;) - {nl# )

which is the Gaussian pdf (c~7). Hence ou substituting into (C~13) we obtain,
for: j 40, ' ‘ o ) |
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o, _
p(zk‘yl'cij) - V;mk ff(ﬁkj“*?‘-k'n)f(’-‘k“-‘ki’ s ) dm

.mk+1 -
= Vo (ng s i S ) (c-14)

where S, . is defined in the relations (C-10). Expression (C-14) is strictly
correct only for a surveillance region of inifinite extent. However, the
truncation effeci is negligible provided that, for each component of Ekj » the
distance from H*ki to the boundary of the surveillance region is large compared

with the standard deviation of that component. If j = 0 so all the measure- .
ments are false,

-m, .
(3 ) = NE -
The second factor in the numerator of (C-12) is the prior probability of

er{v|#iey 1 } = 2}

. since the hypothesis on the current set of measuremeuts is independent of

hypotheses on measurements irom previous time steps., The oaly prior information
‘available is the probability PD of detecting the target and the probability of
the sensor receiving m false weasurements., If false messurements are uniforuly

 distributed over the weasurement space with density o , then it can be shown

that the probability of m fols weasurements falling within the surveillance

~ vegion of the sensor is given by a Poisson distribution., If the volume of the

surveillance region is Vi 0 the probability of receiving @ false weasurements
is given by ' - '

| -pV, "y -
g(m) | ‘-' e k(pvk)/m! . - {C-16)

“The hypothesis Vko corresponds to the event of failing to detect the target aud
- yeceiving LW false measurements. The prior probability of this cecurremce is

??‘{*ko}’ - (_' f"-n)_"‘(%) C M e

y
&
X

¢
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Any of the hypotheses ij, j # 0, could correspond to the situation of detect-

ing the target and receiving Wy 1 false measurements. 4 priori, each of
these hypotheses is equally probable, and since there are o, of them

(for j # 0)

pr{wkj} = PDg(mk- 1)/:»k . (C-18)

The third factor in the numerator of (C-12) is given directly by (C-8):

| Pr{}’k_‘ i} © By * o (c-19)
f Substituting (C=14) to (C-19) into (C-12) we obtain

r - .
Byt if( Zki b By Ski) for j $ 0

re éijlzk}

for i = 0

ssc0ess (C-zo)

(1-n)s %@

,‘u.hereAD-_s - P * Z(Bk-lrz. (k -kr' kt)

b & B T

“{s the normalizing derwminator'; This equation is of key importance because it
_defines the weightings of the mixture distribution (C=9). Note that if Ppet,
as in the example of section 6, knowledge of the dﬁnsicy a of false msasure-

meats Joos not contribute to the postetiar pdf. '

Thus the posterior pdf of L given by (6-9) is a fully ﬁpﬁcified
’ -Gaussi_an mixture, (c-9) ¢an be tcwntnen as a smslé suz by Gefmiag

‘Yu_ T

ot}

]
.Pkl- - Ph
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¥
¥ and ' d
i
= '
g B Pr{ kijlzk }
i
‘}i where 4 = (i - 1)(mk + 1)“‘5 + ‘, for i= !, csoey nk_,i and j = 0’ co ey mk .
5 Thus
"
, Drln) e
Py §k|zk P (% | Fup &)1 ¥4 (c-21)
_ i=1

k
where m, = “ktml-;.+‘ =n m*l) ’

i=1
'P(’.‘.glﬁ?kg' zk) éf(’ﬁk i iEk sz)

and Px'{ﬁ‘;‘ilzk }

The Gaussian amixture (C=21) contains all the available information on the state

- veetor X -after taking account of the latest set of weasurements Zk . Thus in
principle, the optima) astisate based on any desired griterion may be cbtained,’

In particular the winiwum mean .sqmm:‘c_zrmf' estimate is tho wean of the L § )
disteibutions - - o ' S )

ey
-

—-v”‘

& - ) ﬁkﬁgkt

o
Y
-

_ libueﬁer a single value of xk' is a somewhat inadequate suumary of a ﬁixtut‘a‘ :

_d;sctibucmn. éépeuauy if them are s:gmfuam weu space& cwpanenns.

% P I 'n;@ prwr pdf of the state v&ctﬁr -n; nm tk y

o establish, By »induetiw, thé.géimtal. property that the prioe pdt of

e “({equatica (C-6)) is a fully specificd Csussian wixture, it is necessaty to

. derive the pdi of L from the vesult (C-21). This pdf way be darived f:ou |
P (iklzk’ - ) (aote - ﬁ'k is reinstated here) via the propagativa

- equation (c-—p, This informaticn, togethor with 2, and .9’ ,

Y demimd
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“history of true and false measurements, At time ty o the 0, componeuts

40 _ Appendix C

£?k+1 s which is all the prior information available at time el * The prior

pdf of Kppy  TBY be written

b%n[ kH) = [p(ﬁwqhk)p( | kH) . (C-22)

P (§k+1l§k ) is defined by the state propagation equations, and the second term
1

P(ﬁ491+1)v= p(§ﬂzw ga)

since the extra information on state propagation from t, to tp. does not

contribute to the pdf of state at L Substituting (C-21) into (C-22) and

performing the integrations gives

n
k
p(351<-»-1|‘¢k+1) = ZPr{ﬁ’f’mlg'kH} ("k.”l k+i) o (c=23)
i=1
where Pr{ ) k+1} )

and P (§k+1l;?i2’ £?k+1) = “’ﬁ(§k+1 "gk+l 9? Mk+1 2)

with

Beet g 5 B
and

T N
Mepg g = OB, 0+ rQrt .

The pdf (C-23) is of the same form as (C-6): it is a fully specified Gaussian
mixture, Hence the initial supposition of section C.3.1 is proved by induction,

C.4 Discussion

It has been shown that the posterior pdf of the state veetor, just after
incorporating the latest set of measuremenis, is & Gaussian mixture given by
equation (C-21). This equation is a complete description of the filter's know- .
ledge of the state vector., Each component uf the mixture represanﬁs a potential
track and is a Kalman filter estimate of the state vector baged on a possible

- 900




Appendix C 41 . E’

¥

represent all feasible track histories., The weighting Bk2 is the probability E

that track history £ is the correct one. %

For most interesting cases, the number of components . becomes very g

large with increasing k (see (C-21)). Since every component must be §
propagated at each time step, implementation of the optimal solution is :
impractical, hence the need for the reduction algorithms which are the subject %

i of this Report. i
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Appendix D
THE COARSE ACCEPTANCE CASE

A coarse acceptance test is applied to the sensor measurements to reject
any hypothesis that éppears to be very unlikely on the basis of prior informa-
tion. This test is computationally inexpensive as the unlikely hypotheses are
rejected before their corresponding posterior mixture components need be
evaluated. Hopefully the effect of this acceptance test on the posterior
distribution will be insignificant. The mixture reduction algorithm is applied

after the posterior mixture distribution has been compiled.

Each component of the posterior pdf of the state vector is generated by
updating a feasible track from the prior pdf with either a received measurement,
or by prediction on the assumption that all received measurements are false
(see Appendix C, section C,3.2), Consider the prior track, or component i of
(C~6), that corresponds to hypothesis é?;_t i Under hypothesis #!

kij

(j # 0), mweasurement 2 is true and is used to update prior component i .,

...kj

From (C-14), the prior pdf of Ekj under éﬁ“'kij (j # 0) 1is given by

#( 5 s o Se) v

From knowledge of this distribution, an acceptcnce or validation region in the
measurement space may be defined, such that under hypothesis 5?;_‘ {0 the
probability of the true measurement falling cutside the region is very small.
(This type of acceptance test is commonly applied to measurement=~track associas

- tion problems where ambiguities may exist - see Refs 2, 9 and 11,) If the

validation region is chosen so that the probability density of the true

measurement at any point within the region exceeds that at all points outside
‘the region, then the acceptance region is bounded by a hyperellipsoid. Thus a

weasurement Ekj is accepted for updating hypothesis éi?eal { if and only if

T . |
R (2 A“"ki) u'(ikj'“gki) ST e

Note that since the false measurcments have a uniform distribution, this is
equivalent to subjecting each measurement to s likelihood ratio test. ”Por a

'. Lrue measurement 3kj" under hypothesis éi’ 11 the LHS of (D-1) is a sample
from a - xz distribution with dcgraes«of-fteédom equal to the diwension of 3 .
“ius the value of Ik corresponding to a probability o of missing the true

'?OO

R et Tl



Appendix D 43

measurement (if the object is detected and 5?;_1 ; 1s correct) may be obtained
from tables of x2 . In the simulation of section 6, o 1is set to 0,001, which

corresponds to TA = 13.82 for two-dimensional measurement space. Note that a

different acceptance region must be defined for each component of (C-6). To
take account of the possibility of rejecting the true measurement, the detec-

tion probability P_ should be replaced by PD(i - a) o Thus even if P =1,

D D

a component is generated for the finite probability of missing the true

measurement,
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